Четверг, 23.11.2017, 19:39 Приветствую Вас Гость

Электрика в квартире и доме

Главная | Регистрация | Вход | RSS

Двигатель постоянного тока



    Двигатель постоянного тока - это электродвигатель, запитанный от постоянного тока (+ и -). Данные двигатели  применяются в электроприводах, требующих большой диапазон регулирования скорости, большой точности поддержания скорости вращения привода, регулирования скорости вверх от номинальной.
 
   Устройство электродвигателей постоянного тока
 
   В конструкцию двигателей постоянного тока входит индуктор и якорь, которые разделены воздушным зазором.
 
устройство электродвигателя постоянного тока
   Индуктор предназначен для создания неподвижного магнитного поля машины и состоит из станины, главных и добавочных полюсов.
   Станина служит для крепления основных и добавочных полюсов и является элементом магнитной цепи машины.
   На главных полюсах расположены обмотки возбуждения, предназначенные для создания магнитного поля машины, на добавочных полюсах - специальная обмотка, служащая для улучшения условий коммутации.
 
   Якорь электродвигателя постоянного тока состоит из магнитной системы, собранной из отдельных листов железа, рабочей обмотки, уложенной в пазы, и коллектора служащего для подвода к рабочей обмотке постоянного тока. Коллектор представляет собой цилиндр, насаженный на вал двигателя и избранный из изолированных друг от друга медных пластин. На коллекторе имеются выступы, к которым припаиваются концы секций обмотки якоря. Съем тока с коллектора осуществляется с помощью щеток, обеспечивающих скользящий контакт с коллектором.
   Щетки закреплены в щеткодержателях, которые удерживают их в определенном положении и обеспечивают необходимое нажатие щетки на поверхность коллектора. Щетки и щеткодержатели закреплены на траверсе, связанной с корпусом электродвигателя.
 
   Коммутация в электродвигателях постоянного тока
 
   В процессе работы электродвигателя постоянного тока щетки, скользя по поверхности вращающегося коллектора, последовательно переходят с одной коллекторной пластины на другую. При этом происходит переключение параллельных секций обмотки якоря и изменение тока в них. Изменение тока происходит в то время, когда виток обмотки замкнут щеткой накоротко. Этот процесс переключения и явления, связанные с ним, называются коммутацией. В момент коммутации в короткозамкнутой секции обмотки под влиянием собственного магнитного поля наводится э. д. с. самоиндукции. Результирующая э. д. с. вызывает в короткозамкнутой секции дополнительный ток, который создает неравномерное распределение плотности тока на контактной поверхности щеток. Это обстоятельство считается основной причиной искрения коллектора под щеткой. Качество коммутации оценивается по степени искрения под сбегающим краем щетки и определяется по шкале степеней искрения. 

   По способу возбуждения электрические двигатели постоянного тока делятся на четыре группы:
 
электродвигатель постоянного тока
   1. С независимым возбуждением -независимая обмотка возбуждения питается от постороннего источника постоянного тока.
   2. С параллельным возбуждением (шунтовые) - обмотка возбуждения включается параллельно источнику питания обмотки якоря.
   3. С последовательным возбуждением (сериесные) - обмотка возбуждения включена последовательно с якорной обмоткой.
   4. Двигатели со смешанным возбуждением (компаундные) - имеется последовательная сериесная обмотка возбуждения и параллельная шунтовая обмотка возбуждения.
 
   Пуск двигателей постоянного тока
  
   В начальный момент пуска двигателя якорь неподвижен и противо-э. д. с. и напряжение в якоре равна нулю, поэтому Iп = U / Rя. Сопротивление цепи якоря невелико, поэтому пусковой ток превышает в 10 - 20 раз и более номинальный. Это может вызвать значительные электродинамические усилия в обмотке якоря и чрезмерный ее перегрев, поэтому пуск двигателя производят с помощью пусковых реостатов - активных сопротивлений, включаемых в цепь якоря. Двигатели мощностью до 1 кВт допускают прямой пуск. Величина сопротивления пускового реостата выбирается по допустимому пусковому току двигателя. Реостат выполняют ступенчатым для улучшения плавности пуска электродвигателя. В начале пуска вводится все сопротивление реостата. По мере увеличения скорости якоря возникает противо-э. д. с, которая ограничивает пусковые токи. Постепенно выводя ступень за ступенью сопротивление реостата из цепи якоря, увеличивают подводимое к якорю напряжение.

   Торможение электродвигателей постоянного тока
 
   В электроприводах с электродвигателями постоянного тока применяют три способа торможения: динамическое, рекуперативное и торможение противовключением.
   Динамическое торможение электродвигателя постоянного тока осуществляется путем замыкания обмотки якоря двигателя накоротко или через резистор. При этом электродвигатель постоянного тока начинает работать как генератор, преобразуя запасенную им механическую энергию в электрическую. Эта энергия выделяется в виде тепла в сопротивлении, на которое замкнута обмотка якоря. Динамическое торможение обеспечивает точный останов электродвигателя.
   Рекуперативное торможение электродвигателя постоянного тока осуществляется в том случае, когда включенный в сеть электродвигатель вращается исполнительным механизмом со скоростью, превышающей скорость идеального холостого хода. Тогда э. д. с, наведенная в обмотке двигателя, превысит значение напряжения сети, ток в обмотке двигателя изменяет направление на противоположное. Электродвигатель переходит на работу в генераторном режиме, отдавая энергию в сеть. Одновременно на его валу возникает тормозной момент. Такой режим может быть получен в приводах подъемных механизмов при опускании груза, а также при регулировании скорости двигателя и во время тормозных процессов в электроприводах постоянного тока. Рекуперативное торможение двигателя постоянного тока является наиболее экономичным способом, так как в этом случае происходит возврат в сеть электроэнергии.
   Торможение противовключением электродвигателя постоянного тока осуществляется путем изменения полярности напряжения и тока в обмотке якоря. При взаимодействии тока якоря с магнитным полем обмотки возбуждения создается тормозной момент, который уменьшается по мере уменьшения частоты вращения электродвигателя. При уменьшении частоты вращения электродвигателя до нуля электродвигатель должен быть отключен от сети, иначе он начнет разворачиваться в обратную сторону.
 
 
   Рекомендуемые статьи: Двигатель переменного тока
                                                  Бытовые электродвигатели
                                                  Защита электродвигателей
                                                  Маркировка выводов 3-х фазного электродвигателя
                                                  Электродвигатель
 
подписка!

Введите свой e-mail:



Вы узнаете о:
- элетромонтаже ;
- ремонте электроприборов ;
- электробезопасности ;
- электроинструменте ;
- и т.д.
Delivered by FeedBurner
Статьи
Реклама
Статистика
Онлайн всего: 2
Гостей: 2
Пользователей: 0

Яндекс.Метрика