Среда, 25.01.2017, 04:20 Приветствую Вас Гость

Электрика в квартире и доме

Главная | Регистрация | Вход | RSS

Электродвигатель



   Электродвигатель – это устройство, преобразующие электрическую энергию в механическую.  

   Принцип действия электрического двигателя 

   В основе работы электродвигателей лежит принцип электромагнитной индукции. Электродвигатель состоит из статора - это неподвижная часть и ротора (якоря в машинах постоянного тока и коллекторных электродвигателях) - подвижная часть. Электрический ток (либо постоянные магниты) в электродвигателе образует неподвижные и/или вращающиеся магнитные поля.

электродвигатель   Статор – это неподвижная часть электродвигателя, обычно это внешняя часть. Задачи статора зависят от типа электродвигателя: он способен как генерировать неподвижное магнитное поле и состоять из постоянных магнитов и/или электромагнитов, так и создавать вращающееся магнитное поле и состоять из обмоток, питаемых переменным током.

   Ротор (якорь) – это подвижная часть электродвигателя, располагаемая внутри статора. Ротор (якорь) может содержать в себе: постоянные магниты; обмотки на сердечнике, через которые протекают электрические токи (подключаемые через щёточно-коллекторный узел); короткозамкнутую обмотку («беличье колесо»/«беличья клетка»), токи в которой возникают под действием вращающегося магнитного поля статора.

   В результате взаимодействия магнитных полей ротора и статора в электродвигателе возникает вращающий момент, который и приводит в движение ротор двигателя. Так происходит преобразование электрической энергии, подаваемой на различные обмотки двигателя, в механическую энергию вращения. Данная энергия используется с целью привода механизмов в движение. 

   Подробнее об электродвигателях

что такое электродвигатель   Особенностью электродвигателей является свойство обратимости: любой электрический электродвигатель способен выполнять задачи генератора и наоборот, а в любом трансформаторе и электромашинном преобразователе электрической энергии направление преобразования энергии можно изменить на обратное. Несмотря на это, каждая вращающая машина, как правило, может работать только в одном режиме - как генератор, либо как электродвигатель. Таким же образом одна из обмоток трансформатора играет роль приемника электрической энергии (первичная обмотка), а вторая отвечает за отдачу энергии (вторичная обмотка). Это дает возможность наилучшим образом адаптировать электродвигатель для заданных условий работы и максимально выгодно использовать материалы, т.е. добиться наибольшей мощности на единицу веса электродвигателя.
   Процесс преобразования энергии в электродвигателях неразрывно связан с ее потерями, порожденными перемагничиванием ферромагнитных сердечников, прохождением тока через проводники, трением в подшипниках и о воздух и т. д. В связи с этим мощность, потребляемая электродвигателем, всегда выше отдаваемой мощности, а КПД – меньше 100%. Несмотря на это электродвигатели в сравнении с тепловыми и другими видами машин, считаются вполне совершенными преобразователями энергии с достаточно высокими КПД. Например, в самых мощных электродвигателях КПД достигает 98-99,5%, а в электродвигателях мощностью 10 вт. КПД принимает значения 20-40%. Такие высокие показатели КПД при столь низких мощностях недостижимы в других видах машин.

   Электродвигатели стали массово использоваться благодаря наличию ряду положительных характеристик: высокие энергетические показатели, удобство подачи и отдачи энергии, возможность наличия электродвигателей различных мощностей и скоростей вращения, а также простоте и лёгкости в их обслуживании. 

   С повышением нагрузки электрической машины увеличиваются потери энергии, растет уровень нагревания машины. В связи с этим максимальная мощность нагрузки машины определяется в зависимости от допустимой величины ее нагревания, а также от механической прочности отдельных ее частей, условий токосъема на скользящих контактах и т.д. Напряженность режима работы электродвигателей переменного тока по отношению к электромагнитным нагрузкам (величине магнитной индукции, плотности тока и т.д.), потерям энергии и нагреванию определяется не активной, а полной мощ­ностью, т.к. величина магнитного потока в машине зависит от полного напряжения, а не от его активной части. Полезная мощность, предусмотренная для электрической машины, носит название номинальной. Остальные величины, которые также характеризуют работу электродвигателя при данной мощности - также называются номинальными. Среди них номинальные ток, напряжение, скорость вращения, КПД и др. величины(для машины переменного тока – номинальные частота и коэффициент мощности).

   Основные номинальные величины прописываются в паспортной таблице, прикрепленной к машине. Считается, что номинальной мощностью у двигателя служит полезная мощность на его валу, а у генератора – электрическая мощность, отдаваемая с его выходных зажимов. Тем временем для генераторов переменного тока дается или полная, или активная номинальная мощность. Все технико-экономические данные и требования для электрических машин устанавливаются в России государственными стандартами (ГОСТ) на электродвигатели.

электродвигатель    Номинальные напряжения электродвигателей сопоставлены в ГОСТ стандартным номинальным напряжениям электрических сетей. В то же время номинальные напряжения электрических двигателей и первичных обмоток трансформаторов считаются равными стандартным напряжениям электрических сетей, а напряжения генераторов и вторичных обмоток трансформаторов — на 5-10% больше для компенсации падения напряжения в сетях. Наиболее широко употребляемые номинальные напряжения электродвигателей: для двигателей постоянного тока ПО, 220 и 440 в, для генераторов постоянного тока 115, 230 и 460 в, для двигателей переменного тока и первичных обмоток трансформаторов 220, 380, 660 б и 3, 6, 10 кв, для генераторов и вторичных обмоток трансформаторов 230, 400, 690 в и 3,15; 6,3; 10,5; 21 кв (для вторичных обмоток трансформаторов также 3,3; 6,6; 11 и 22 кв). Из более высоких напряжений для первичных обмоток трансформаторов стандартными являются 35, 110, 150, 220, 330, 500 и 750 кв и для вторичных обмоток 38,5; 121; 165; 242; 347; 525 и 787 кв.
   В России, как и в большинстве других стран мира промышленная частота тока равна 50 гц, поэтому большинство машин переменного тока также создается на 50 гц. В США и других странах Америки промышленная частота тока равна 60 гц. Для различных специальных назначений (электротермические установки, устройства автоматики и др.) используют также электродвигатели с другими показателями частоты тока.

   По мощности электродвигатели делятся на следующие группы:

   • до 0,5 квт – электродвигатели весьма малой мощности, или микроэлектродвигатели;
   • 0,5 – 20 квт – электродвигатели малой мощности;
   • 20 – 250 квт – электродвигатели средней мощности;
   • более 250 квт — электродвигатели большой мощности.

   Эти границы между группами в некоторой мере условны.
 

   Рекомендуемые статьи: Двигатель переменного тока
                                                  Двигатель постоянного тока
                                                  Бытовые электродвигатели
                                                  Переделать 3-х фазный эл.двигатель на 220В
                                                  Электрика в квартире и частном доме
                                      
 
подписка!

Введите свой e-mail:



Вы узнаете о:
- элетромонтаже ;
- ремонте электроприборов ;
- электробезопасности ;
- электроинструменте ;
- и т.д.
Delivered by FeedBurner
Статьи
Реклама
Статистика
Онлайн всего: 1
Гостей: 1
Пользователей: 0

Яндекс.Метрика